Ryan Graham

Carte électronique

Ryan Graham
Professeur agrégé

2012 Ph.D. Biomécanique et ergonomie Université Queen’s
2008 M.Sc Biomécanique et ergonomie Université Queen’s
2005 B.P.H.E Éducation physique et santé Université Queen’s
2005 B.Sc. Biologie Université Queen’s

Pièce : Lees E260G
Bureau : (613) 562-5800 poste 1025
Courriel professionnel : rgraham@uottawa.ca

Biographie

En 2012, Ryan Graham a obtenu un doctorat en biomécanique et ergonomie de l’Université Queen’s. Il a ensuite obtenu un poste de professeur adjoint à la Nipissing University, qui lui a permis d’assumer son poste menant à la permanence actuel à l’Université d’Ottawa. Son programme de recherche associe la biomécanique et les contrôles moteurs en vue d’éclairer les interventions associées avec le mouvement (par ex. la mobilité du tronc, le soulèvement et le port de charges) chez les populations atteintes de troubles pathologiques musculo-squelettiques et neurologiques (par ex. douleurs dans le bas du dos). Plus particulièrement, il s’intéresse aux mécanismes des blessures dans l’ensemble du corps, en particulier la colonne vertébrale (l’instabilité, le contrôle neuromusculaire et la faible qualité des mouvements), l’évaluation des blessures (l’évaluation quantitative du trouble grâce à des techniques de systèmes dynamiques nouveaux) et les interventions sur les blessures (la réadaptation préventive et réactive grâce à des interventions ergonomiques, biomécaniques et à des interventions sur les contrôles moteurs visant à réduire les blessures initiales et à améliorer la récupération).

    Adhésion

    • Professeur adjoint auxiliaire, School of Kinesiology and Health Studies, Université Queen’s
    • Professeur adjoint auxiliaire, Department of Kinesiology, Université de Waterloo
    • International Society of Biomechanics
    • Société canadienne de biomécanique
    • Institut canadien de recherche sur la santé des militaires et des vétérans

    Champs d’intérêt

    • Biomécanique et ergonomie
    • Mécanisme de lésion de la colonne vertébrale et douleurs lombaires
    • Locomotion et chargement
    • Triage de la qualité des mouvements
    • Modélisation et simulation

    Sélection de publications

    • Hay, D.C., Wachowiak, M.P., Graham, R.B. (2016). Evaluating the relationship between muscle activation and spine kinematics through wavelet coherence. Journal of Applied Biomechanics, In Press.
    • Southwell, D., Hills, N.F., McLean, L., Graham, R.B. (2016). The acute effects of targeted abdominal muscle activation training on spine stability and neuromuscular control. Journal of NeuroEngineering and Rehabilitation, 13 (1): 19.
    • Mavor, M., Graham, R.B. (2015). Exploring the relationship between local and global dynamic trunk stabilities during repetitive lifting tasks. Journal of Biomechanics, 48 (14): 3955-3960.
    • Ross, G.B., Mavor, M., Brown, S.H.M., Graham, R.B. (2015). Acute experimentally induced low back pain alters spine stability and stiffness patterns during repetitive movement tasks. Annals of Biomedical Engineering, 43 (9): 2120-2130.
    • Graham, R.B., Smallman, C.L.W., Miller, R.H., Stevenson, J.M. (2015). A dynamical systems analysis of assisted and unassisted anterior and posterior hand-held load carriage. Ergonomics, 58 (3):  480-491.
    • Howarth, S.J., Graham, R.B.  (2015). Sensor positioning and experimental constraints influence estimates of local dynamic stability during repetitive spine movements. Journal of Biomechanics, 48 (6): 1219-1223.
    • Graham, R.B., Brown, S.H.M. (2014). Local dynamic stability of spine muscle activation and stiffness patterns during repetitive lifting. Journal of Biomechanical Engineering, 136 (12): 1-9.
    • Graham, R.B., Oikawa, L.Y., Ross, G.B. (2014). Comparing the local dynamic stability of trunk movements between varsity athletes with and without non-specific low back pain. Journal of Biomechanics, 47 (6): 1459-1464.
    • Brandon, S.C.E., Graham, R.B., Sadler, E.M., Almosnino, S., Stevenson, J.M., Deluzio, K.J. (2013). Interpreting principal components in biomechanics: representative extremes and single component reconstruction. Journal of Electromyography and Kinesiology, 23 (6): 1304-1310.
    • Smallman, C.L.W., Graham, R.B., Stevenson, J.M. (2013). The effect of an on-body assistive moving device on transverse plane trunk coordination during a load carriage task. Journal of Biomechanics, 46 (15): 2688-2694.
    • Howarth, S.J., Kingston, D.C., Brown, S.H.M., Graham, R.B. (2013). Viscoelastic creep induced by repetitive spine flexion and its relationship to dynamic spine stability. Journal of Electromyography and Kinesiology, 23 (4): 794-800.
    • Graham, R.B., Smallman, C.S., Sadler, E.M., Stevenson, J.M. (2013). Interjoint coordination and the personal lift-assist device. Journal of Applied Biomechanics, 29 (2): 194-204.
    • Graham, R.B., Sheppard, P., Almosnino, S., Stevenson, J.M. (2012). Dynamic spinal stability and kinematic variability across automotive manufacturing work shifts and days. International Journal of Industrial Ergonomics, 42 (5): 428-434.
    • Graham, R.B., Brown, S.H.M. (2012). A direct comparison of spine rotational stiffness and dynamic spine stability during repetitive lifting tasks. Journal of Biomechanics, 45 (9): 1593-1600.
    • Graham, R.B., Sadler, E.M., Stevenson, J.M. (2012). Local dynamic stability of trunk movements during the repetitive lifting of loads. Human Movement Science, 31 (3): 592-603.
    • Graham, R.B., Costigan, P.A., Sadler, E.M., Stevenson, J.M. (2011). Local dynamic stability of the lifting kinematic chain. Gait & Posture, 34 (4): 561-563.
    • Graham, R.B., Sadler, E.M., Stevenson, J.M. (2011). Does the personal lift-assist device (PLAD) affect the local dynamic stability of the spine during lifting? Journal of Biomechanics, 44 (3): 461-466.
    • Sadler, E.M., Graham, R.B., Stevenson, J.M. (2011). The personal lift-assist device and lifting technique: A principal component analysis. Ergonomics, 54 (4): 392-402.
    • Reid, S.M., Graham, R.B., Costigan, P.A. (2010). Differentiation of young and older adult stair climbing gait using principal component analysis. Gait & Posture, 31 (2): 197-203. 
    • Graham, R.B., Agnew, M.J., Stevenson, J.M. (2009). Effectiveness of an on-body lifting aid at reducing low-back physical demands during an automotive assembly task: Assessment of EMG response and user acceptability. Applied Ergonomics, 40 (5): 936-942.

    Conférences et publications

    • Graham, R.B. (2016). Keynote Lecture: Low back pain and the control of lumbar movement. 9th Interdisciplinary World Congress on Low Back and Pelvic Girdle Pain. October 31-November 3, Singapore, Singapore.
    • Graham, R.B., Ross, G.B., Sheahan, P.J., Mahoney, B., Gurd, B.J., Hodges, P.W. (2016). Pain catastrophizing moderates changes in the local dynamic stability of the spine in response to noxiously induced low back pain. 19th Biennial Meeting of the Canadian Society for Biomechanics, July 19-22, Hamilton, Ontario, Canada.
    • Ross, G.B., Dowling, B., Fischer, S.L., Graham, R.B. (2016). The application of principal components analysis as a movement pattern recognition technique: A proof of principle. 19th Biennial Meeting of the Canadian Society for Biomechanics, July 19-22, Hamilton, Ontario, Canada.
    • Graham, R.B. (2015). The effects of experimentally induced low back pain using noxious stimulation on dynamic spine stability. CIHR Institute of Musculoskeletal Health and Arthritis (IMHA) Young Investigators Forum 2015, October 22-23, Kananaskis, Alberta, Canada.
    • Mavor, M., Graham, R.B. (2015). Exploring the relationship between local and global spine stabilities during repetitive lifting tasks. XXV Congress of the International Society of Biomechanics, July 12-16, Glasgow, Scotland.
    • Southwell, D., Hills, N.F., McLean, L., Graham, R.B. (2015). Does the abdominal drawing-in maneuver change the local dynamic stability of repetitive spine movements in a healthy population? XXV Congress of the International Society of Biomechanics, July 12-16, Glasgow, Scotland.
    • Ross, G.B., Mavor, M., Brown, S.H.M., Graham, R.B. (2015). The effects of experimentally induced low back pain on spine rotational stiffness and local dynamic stability. XXV Congress of the International Society of Biomechanics (Podium), July 12-16, Glasgow, Scotland.
    • Graham, R.B., Kingston, D.C., Almosnino, S. (2014). Biomechanics of military load carriage: the effects of walking speed on dynamic gait stability. Canadian Institute for Military and Veteran Health Research (CIMVHR) Forum, November 24-26, Toronto, Ontario, Canada.
    • Ross, G.B., Oikawa, L.Y., Graham, R.B. (2014). Comparing the local dynamic stability of trunk movements between varsity athletes with and without non-specific low back pain. 7th World Congress of Biomechanics, July 6-11, Boston, Massachusetts, USA.
    • Graham, R.B., Brown, S.H.M. (2013). Local dynamic stability of spine motor patterns and stiffness during lifting tasks. XXIV Congress of the International Society of Biomechanics, August 4-9, Natal, Rio Grande do Norte, Brazil. 
    Haut de page